(通用)小学六年级上册数学
小学六年级上册数学1教学内容:
义务教育课程标准试验教科书青岛版小学数学六年级上册第73—78页。
教材简析:
教材在学生已经掌握了求一个数的几分之几是多少的一步和两步计算的分数应用题的基础上,呈现了中国的世界遗产这一情景。通过介绍中国的世界遗产情况,引导学生提出问题,引入对乘加应用题的探索。知识点是让学生在具体情景中,借助一、二单元的知识基础,运用已有的知识经验,自己探索出分数四则混合运算的计算规律,并能灵活的运用这个规律解决问题。重点是将四则混合运算规律正确地迁移到分数中。
教学目标:
1.知识目标:在具体情景中,能正确描述数量关系,画线段图,并根据数量关系和线段图列出算式并正确解答乘加、乘减分数应用题,在不断探索中领悟分数四则混合运算的规律。
2.能力目标:通过让学生说一说、画一画,培养学生的分析能力、概括能力、综合能力,培养学生的探究意识。
3.情感目标:创设平等和谐、积极向上的学习氛围,培养学生的合作意识,感受数学与生活的.密切联系,提高学习数学的兴趣。
教学过程:
一、创设情境,谈话导入。
谈话:同学们,2008年的奥运会相信大家一定记忆犹新,世界人民走进奥运,走进了北京。作为一名中国人,你能说说北京有哪些历史文化遗产吗?
[设计意图]这一单元是围绕“中国的世界遗产”这个大的情境串进行的,而本课是分数四则混合运算的第1个信息窗,情境内容将中国放入世界这一大环境中,因此由奥运会的话题引出了本课情境,这样设计让学生自然而然地进入了本课,激发了学习兴趣。
二、自主探究,获取新知。
1.课件出示教科书73页情境
谈话:这里有一些我国世界遗产的文字信息,谁能读一读?根据文字信息你能提出什么数学问题?
(1)北京故宫的占地面积大约是多少公顷?
(2)我国的世界文化遗产和自然遗产一共有多少处?
(3)我国的世界文化遗产比自然遗产多多少处?………
(4)同学们提出了这么多问题,我们先来解决“北京故宫的占地面积大约是多少公顷?”好吗?
2.根据以往的解题经验,我们可以用什么方法帮助你解决这一问题?
[设计意图]让学生在自己提出问题的基础上,动脑思考解决问题的办法,梳理已有的数学思想方法,为新问题的解决做好铺垫。
3.选择你喜欢的方法试着独立解决这一问题好吗?
4.学生汇报交流。
让学生到前面展示不同的方法,分别说说自己的解题思路。
(1)272×1/4=68(公顷) 68+4=72(公顷)
(2)272×1/4+4
=68+4
=72(公顷)
学生在多次交流解题步骤中,教师板书数量关系
天坛公园的面积×1/4+比天坛公园多的面积=故宫的面积
并展示学生画的线段图。让学生分析线段图。
[设计意图]学生是探究主体,教师是引导者。在这里把让学生说解题思路放在首位,突出重点,突破难点。
5.刚才同学们有的用分步,有的列综合算式解决了第一个问题,现在你能试着用先画线段图再列综合算式的方法自己解决你们提出的“我国的世界文化遗产和自然遗产一共有多少处?”吗?
学生独立解决。(根据学生情况,如果画图有困难,可让学生小组内讨论一下,在这里把谁看作单位“1”?)
全班交流,展示做题方法。
(1)30×7/10+30×2/15 (2)30×(7/10+2/15)
=21+4 =30×25/30
=25(处) =25(处)
6.让学生展示线段图的画法,说清解题思路。
7.点题并板书:分数应用题。
8.单看这两个算式的计算,你能想到什么运算律?有什么启发?
9.小结:乘法的分配律在分数中同样适用。
[设计意图]让学生借助两种解题方法,将分数与整数的运算率沟通,为后面的练习搭建了平台。
三、巩固练习,加深理解。
独立完成(第75页第2、3题。)
指生回答,并说出解题思路。
(重点说出数量关系。)
[设计意图]这两道题是针对性练习,旨在巩固所学知识。数量关系要让学生反复说,目的是让学生从理论上加以理解。
四、回归实践,拓展运用。
课件再次出示本课信息窗情境图。
谈话:现在你能自己解决“我国的世界文化遗产比自然遗产多多少处?”吗?
现在让我们走进民族文化遗产——青藏高原,检验一下这节课你的学习情况。
课本76页第9题。学生读题,指生列式。
[设计意图]引导学生回归课题情景,联系生活实际,学以致用,灵活掌握解题方法。
五、谈收获。
这节课你有什么收获?
小学六年级上册数学2我上了一节扇形统计图公开课,课后有如下反思:
思考一:成功之举
上课之前作为一个年轻教师我压力很大,课该往哪里引?是面面俱到呢?还是体现一点特色或创新?诸多问题困扰着我。这是我们数学组的各位老师给了我无私的帮助,帮我设计好了教学环节。决定只体现两点发散思维的培养和情感目标的达成。于是精心设计了这两个环节。
1, 激发学生思维,给学生更多的思考空间
课上我是通过提问发散性问题来激活学生思维。如:从这幅图中你能想到什么学生回答五花八门,多是肤浅的问题,但参与面很广。接着第二次提问:从这幅图中你还能想到什么学生的回答转向一些具体问题。如:我们一般用圆表示--------。用扇形表示---------,扇形的大小表示等等。
2, 促成情感目标的`落实
如第八张幻灯片中提问:作为发展中国家的公民你应该怎样去做。从而激发学生的民族自尊心。
思考二:败笔之处
1, 有些题讲的太快部分学生没有跟上特别是第七张幻灯片中计算扇形B表示的人数和C表示公顷数时讲的不透彻。
2, 没有掌握好时间,整节课前松后紧,以至于有点拖堂。
小学六年级上册数学3比
比:两个数相除也叫两个数的比
1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
连比如:3:4:5读作:3比4比5
2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20,读作:12比20
区分比和比值:比值是一个 ……此处隐藏15003个字……01
(学生口述自己是怎样应用乘法的运算定律简算上面各题的。)
二、新授。
1、引入:
同学们应用乘法的运算定律,可以使整数、小数的一些计算简便,这些运算定律能不能应用到分数乘法中呢?今天这节课我们就来共同研究这个问题。
(板书课题:整数乘法的运算定律能否推广到分数乘法)
2、推导运算定律是否适用于分数。
(1)学生发表对课题的见解。
(2)验证:
有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?(学生小组合作学习)
3、教学例5。
(1)出示:,学生小组合作独立解答。
4、教学例6。
(1)出示:,学生小组合作独立计算。
(2)小组汇报学习成果,说一说你们组应用了什么运算定律。
5、小结:
应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点想应用什么定律可以使计算简便。
三、巩固练习。
1、完成练习三的第6题。
学生说一说应用了什么运算定律。
2、完成课本第10页的“做一做”题目。
其中第2题引导学生讨论解题思路,把87改成“86+1”应用乘法分配律计算比较简便。
四、总结:
这节课你有什么收获?
五、课堂练习。
练习三的第7—9题。
小学六年级上册数学15教学目标:
1、使学生在自主探究的学习过程中理解比的意义。
2、掌握比的各部分名称,以及比与除法、分数的关系,会求比值。明确比的后项不能为零的道理。
3、引导学生探索知识间的内在联系,培养学生敢于质疑问难,勇于探索的精神。
教学重点:
理解并掌握比的意义,会求比值。
教学难点:
理解比与除法、分数的关系。
教学关键:
理解一个比中各部分量的关系。
教具准备:
小黑板
教学过程:
一、提出问题
1、导语:神话总是在人们期待中变成现实,20xx年10月15日,我国第一艘载人飞船“神舟五号”顺利升空,那精彩的一幕至今让人记忆犹新。请同学们把书轻翻到第43页看书中的插图。此时画面中航天英雄杨利伟向人们展示联合国国旗和中华人民共和国国旗。
师:这两面国旗都是长15cm、宽10cm,根据这两个条件怎样用算式表示它们长和宽的关系呢?
生自由汇报:
①15÷10 表示长是宽的几倍。
②10÷15 表示宽是长的几分之几。
③15-10 表示长比宽多多少?或宽比长少多少?
教师小结:表示这样的两个数量关系可以用减法,也可以用除法。在用除法来表示两个量之间的关系时还可以用比的方式。怎么表示呢?这就是我们今天要学的新知识。板书:比的意义
2、出示学习目标:
⑴理解比的意义。
⑵掌握比的各部分名称,以及比与除法、分数的关系,会求比值。
⑶明确比的后项不能为零的道理。
二、解决问题
(一)、出示自学提示:
⑴看书自学第43----44页,思考:什么是比?你能结合书中的例子谈谈你对比的意义的理解吗?
⑵比的.各部分名称是什么?怎样求比值呢?用序号①②③……标出你学会的内容。
⑶比与除法、分数之间的联系与区别是什么?
(二)、学生自学汇报
1、师:15÷10表示什么?(长是宽的几倍),也可以说成长和宽的比是15比10。
10÷15表示什么?也可以说成谁与谁的比呢?
生:10÷15表示宽是长的几分之几,也可以说成宽和长的比是10比15.
教师小结:长和宽表示长度,是同类量。同类量可以比,不同类量可以比吗?
2、出示“神舟五号”进入运行轨道后在离地面350千米的高空作圆周运动,平均90分钟绕地球一周,大约运行42252km。
师边说边板书:42252km 90分钟
师:怎样用算式表示飞船进入轨道后平均每分钟飞行多少千米呢?
生1:42252÷90 表示是飞船速度。(用除法算式)
生2:速度可以用路程÷时间表示
生3:我们也可以用比来表示路程和时间关系
生4:42252÷90也可以说成路程和时间的比是42252比90。
教师小结:长和宽的比是两个长度比,即同类量的比,表示两个数之间倍数关系。而路程和时间的比是两个不同类量的比,但它们是有关联的量,两个不同类量的比可以表示出一个新的量。它们相除时都可以用比来表示。
3、归纳概括
师:观察上面这些例子,你能试着概括什么叫比吗?自说,同桌互议。
生:两个数相除又叫做两个数的比。(师板书)
教师小结:我们把除法形式,可以说成两个数的比,所以两个数相除又叫做两个数的比。
4、比的各部分名称是什么?怎样求比值呢?(生继续汇报)
生1:比号像冒号 “ :”
师说明:比有自己的书写形式,写比时把比号写在两数字中间,读作谁比谁,
如10:15读作10比15
生2:比各部分名称(生举例说明)
15 : 10= 15 ÷ 10 = =
| | | | |
前项 比号 后项 用前项除以后项 商 比值
生3:求比值是用比的前项除以比的后项
生4:比值表示方法有三种:小数、分数、整数
师出示练习题求比值:
10:25 0.5:0.05 :
(指三名学生到黑板板演,其他学生在本上完成,汇报,总结)
生5:比值与比的联系与区别
比值是一个数,是比的前项除以后项所得的商,它可以用分数、小数、整数来表示。而比是表示两个数的关系,可以用分数表示,但不能读作分数,更不能用小数、整数表示。(即比是由两个数和一个比号组成)
练习:p44 1题 做一做(填空汇报)
生6:比与除法、分数之间的联系与区别(师下发表格,小组同学共同完成)
学生汇报填写下表:
比 前项 :比号 后项 比值 一种关系
除法 被除数 ÷除号 除数 商 一种运算
分数 分子 — 分数线 分母 分数值 一个数
讨论:
①为什么是“相当于”而不是是或等于呢?
②比的后项为什么不能是0呢?
③能否用字母表示出它们三者关系呢?a÷b= a/b = a:b(b≠0)
三、归纳概括
1、这节课你有什么收获?
2、你怎样获取知识的?
文档为doc格式