高中数学说课稿集合15篇
作为一名教师,通常会被要求编写说课稿,认真拟定说课稿,优秀的说课稿都具备一些什么特点呢?下面是小编为大家收集的高中数学说课稿,仅供参考,欢迎大家阅读。
高中数学说课稿1一、教材分析
本节内容是等差数列(第一课时)的内容,属于数与代数领域的知识。本节是数列课程的新授课,为后面等比数列以及数列求和的知识点作基础。数列是高中数学重要内容之一,它有着广泛的实际应用。等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。在数学思想的方面,数列在处理数与数之间的关系中,更多地培养了学生运用函数与函数关系的思想。
二、教学目标
根据课程标准的要求和学生的实际水平,确定了本次课的教学目标
(1)在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想。
(2)在能力上:培养学生观察、分析、归纳、推理的能力;以形象的实际例子作为学生理解与练习的模板,使学生在不断实践中巩固学习到的知识;通过阶梯性练习,提高学生分析问题和解决问题的能力。
(3)在情感上:通过对等差数列在实际问题中的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。
3、教学重点和难点
根据课程标准的要求我确定本节课的教学重点为: ①等差数列的概念。
②等差数列的通项公式的推导过程及应用。
三、教学方法分析:
对于高中学生,知识经验比较贫乏,虽然他们的智力发展已到了形式运演阶段,但并不具备教强的抽象思维能力和演绎推理能力,所以本堂课将从实际中的'问题出发,以学生日常生活中较易接触的一些数学问题,籍此启发学生对于数列知识点的理解。本节课大多采用启发式、讨论式的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,并学会将数学知识运用到实际问题的解决中。
四、教学过程
通过复习上节课数列的定义来引入几个数列
1)0,5,10,15,20,25.....2)18,15.5,13,10.5,8,4.5 3) 48,53,58,63,68.....通过这3个数列,初步认识等差数列的特征,为后面的概念学习建立基础。由学生观察第一个数列与第三个数列的特点,并与第二个做对比,引出等差数列的概念。
(二)新课探究
1、由引入自然的给出等差数列的概念:
定义:如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。强调:
① “从第二项起”满足条件;
②公差d一定是由后项减前项所得;
③每一项与它的前一项的差必须是同一个常数;
在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:
an+1-an=d (n≥1)
同时为了配合概念的理解,引导学生讲本不是等差数列的第二组数列修改成等差数列。并由观察三组数列的不同特点,由此强调:公差可以是正数、负数,并再举出特例数列1,1,1,1,1,1,1......说明公差也可以是0。
2、第二个重点部分为等差数列的通项公式
在归纳等差数列通项公式中,我采用讨论式的教学方法。给出等差数列的首项,公差d,运用求数列通项公式的办法------迭加法:整个过程通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。
若一等差数列{an }的首项是a1,公差是d,则据其定义可得:
a2 – a1 =d a3 – a2 =d a4 – a3 =d …… an – an-1=d将这(n-1)个等式左右两边分别相加,就可以得到an– a1= (n-1) d即an= a1+(n-1) d(1)
当n=1时,(1)也成立,
所以对一切n∈N﹡,上面的公式都成立
因此它就是等差数列{an}的通项公式。对照已归纳出的通项公式启发学生想出将n-1个等式相加。证出通项公式。
在这里通过运用迭加法这一数学思想,便于学生从概念理解的过程过渡到运用概念的过程。
接着举例说明:若一个等差数列{an}的首项是1,公差是2,得出这个数列的通项公式是:an=1+(n-1)×2,
即an=2n-1以此来巩固等差数列通项公式运用。
(三)应用举例
现实生活中,以学生较为熟悉的iphone手机的数据作为例子。观察Iphone手机的发布时间,iphone第一代发布于20xx年,第二代发布于20xx年,第三代发布于20xx年,第四代发布于20xx年。现在第六代发布于今年20xx年。首先,让学生观察从04年到10年每两代iphone发布的间隔时间,让学生自行寻找规律,并在此基础上让学生估测第五代iphone的发布时间,并验证第五代iphone发布于20xx年。同时,再让学生预测在未来,下一部iphone发布的时间,是学生体验到将数学知识运用到实际中的方法与步骤。为了加深联系,再给出了每代iphone的价格:iphone1 4299;iphone2 4800;iphone3 5299;iphone4 5988;iphone5 6300。在给出的数据上,将价格随时间的变化以坐标轴的形式作图表示出来,让学生观察到虽然这些数据非等差,但是可以大致变为等差的直线图像,让学生体会到“拟合数据”的思想。在此基础上,让学生进行练习,预测14年如今iphone6的上市价格为6888元,并与学生通过数列进行推理的价格进行对比,让学生对自己在实践中解决问题的过程中找到一定的认同感。
五、归纳小结
提问学生,总结这节课的收获
1、等差数列的概念及数学表达式,并强调关键字:从第二项开始,它的每一项与前一项之差都等于同一常数。
2、等差数列的通项公式an= a1+(n-1) d
3、将让学生在实践中了解,将数列知识点运用到实际中的方法。
4、在课末提出启发性问题,若是有人将每一部iphone都买入,那他一共花费了多少钱?借此引出了下一节,等差数列求和的知识点。让学生尝试自行去思考这样的问题。
5、布置作业
高中数学说课稿2各位专家、评委:大家好!
今天我说课的题目是×××。下面我将从教材分析、教法分析、学法分析、过程分析四个方面来汇报我对这节课的教学设 ……此处隐藏29882个字……生依照概念自行分析,独立完成。
(3)重点,难点,关键
由于本节课是本章内容的第一节课,是学生学习本章的基础。为了本章后面知识的学习,首先必须掌握向量的概念,要抓住向量的本质:大小与方向。所以向量,相等向量的概念,向量的几何表示是这节课的重点。本节课是为高一后半学期学生设计的,尽管此时的学生已经有了一定的学习方法和习惯,但根据以往的教学经验,多数学生对向量的认识还比较单一,仅仅考虑其大小,忽略其方向,这对学生的理解能力要求比较高,所以我认为向量概念也是这节课的难点。而解决这一难点的关键是多用复杂的几何图形中相等的有向线段让学生进行辨认,加深对向量的理解。
二说教学目标的确定
根据本课教材的特点,新大纲对本节课的教学要求,学生身心发展的合理需要,我从三个方面确定了以下教学目标:
(1)基础知识目标:理解向量,零向量,单位向量,共线向量,平行向量,相等向量的概念,会用字母表示向量,能读写已知图中的向量。会根据图形判定向量是否平行,共线,相等。
(2)能力训练目标:培养学生观察、归纳、类比、联想等发现规律的一般方法,培养学生观察问题,分析问题,解决问题的能力。
(3)情感目标:让学生在民主、和谐的共同活动中感受学习的乐趣。
三说教学方法的选择
Ⅰ教学方法
本节课我采用了”启发探究式的教学方法,根据本课教材的特点和学生的实际情况在教学中突出以下两点:
(1)由教材的特点确立类比思维为教学的主线。
从教材内容看平面向量无论从形式还是内容都与物理学中的有向线段,矢量的概念类似。因此在教学中运用类比作为思维的主线进行教学。让学生充分体会数学知识与其他学科之间的联系以及发生与发展的过程。
(2)由学生的特点确立自主探索式的学习方法
通常学生对于概念课学起来很枯燥,不感兴趣,因此要考虑学生的情感需要,找一些学生感兴趣的题材来激发学生的学习兴趣,另外,学生都有表现自己的欲望,希望得到老师和其他同学的认可,要多表扬,多肯定来激励他们的学习热情。考虑到我校学生的基础较好,思维较为活跃,对自主探索式的学习方法也有一定的认识,所以在教学中我通过创设问题情境,启发引导学生运用科学的思维方法进行自主探究。将学生的独立思考,自主探究,交流讨论等探索活动贯穿于课堂教学的全过程,突出学生的主体作用。
Ⅱ教学手段
本节课中,除使用常规的教学手段外,我还使用了多媒体投影仪和计算机来辅助教学。多媒体投影为师生的交流和讨论提供了平台;计算机演示的作图过程则有助于渗透数形结合思想,更易于对概念的理解和难点的突破。
四教学过程的设计
Ⅰ知识引入阶段———提出学习课题,明确学习目标
(1)创设情境——引入概念
数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。
由生活中具体的向量的实例引入:大海中船只的航线,中国象棋中”马”,”象”的走法等。这些符合高中学生思维活跃,想象力丰富的特点,有利于激发学生的学习兴趣。
(2)观察归纳——形成概念
由实例得出有向线段的概念,有向线段的三个要素:起点,方向,长度。明确知道了有向线段的起点,方向和长度,它的终点就唯一确定。再有目的的进行设计,引导学生概括总结出本课新的知识点:向量的概念及其几何表示。
(3)讨论研究——深化概念
在得到概念后进行归纳,深化,之后向学生提出以下三个问题:
①向量的要素是什么?
②向量之间能否比较大小?
③向量与数量的区别是什么?
同时指出这就是本节课我们要研究和学习的主题。
Ⅱ知识探索阶段———探索平面向量的平行向量。相等向量等概念
(1)总结反思——提高认识
方向相同或相反的非零向量叫平行向量,也即共线向量,并且规定0与任一向量平行.长度相等且方向相同的向量叫相等向量,规定零向量与零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要条件。
(2)即时训练—巩固新知
为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,通过学生的观察尝试,讨论研究,教师引导来巩固新知识。
[练习1]判断下列命题是否正确,若不正确,请简述理由.
①向量与是共线向量,则A、B、C、D四点必在一直线上;
②单位向量都相等;
③任一向量与它的相反向量不相等;
④四边形ABCD是平行四边形的充要条件是=;
⑤模为0是一个向量方向不确定的充要条件;
⑥共线的向量,若起点不同,则终点一定不同.
[练习2]下列命题正确的是( )
A.a与b共线,b与c共线,则a与c也共线
B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点
C.向量a与b不共线,则a与b都是非零向量
D.有相同起点的两个非零向量不平行
Ⅲ知识应用阶段————共线向量,相等向量等概念的初步应用
在本阶段的教学中,我采用的是课本上一道典型的例题:在一个复杂图形中观察,辨认平行,相等的有向线段。选用本题的目的是让学生进行独立思考,自主探究,交流讨论等探索活动,加深对概念的理解和对难点的突破。
例如图所示,设O是正六边形ABCDEF的中心,分别写出图中与向量相等的向量。(同时思考:向量与相等么?向量与相等么?)
具体教学安排如下:
(1)分析解决问题
先引导学生分析解决问题。包括向量的概念,:向量相等的概念。抓住相等向量概念的实质:两个向量只有当它们的模相等,同时方向又相同时,才能称它们相等。进而进行正确的辨认,直至最终解决问题。
(2)归纳解题方法
主要引导学生归纳以下两个问题:①零向量的方向是任意的,它只与零向量相
等;②两个向量只要它们的模相等,方向相同就是相等向量。一个向量只要不改变它的大小和方向,是可以任意平行移动的,既向量是自由的。
Ⅳ学习,小结阶段———归纳知识方法,布置课后作业
本阶段通过学习小结进行课堂教学的反馈,组织和指导学生归纳知识,技能,方法的一般规律,为后续学习打好基础。
具体的教学安排如下:
(1)知识,方法小结在知识层面上我首先引导学生回顾本节课的主要内容,提醒学生要抓住向量的本质:大小与方向,对它们进行类比,加深对每个概念的理解。
在方法层面上我将带领学生回顾探索过程中用到的思维方法和数学方法如:
类比,数形结合,等价转化等进行强调。
(2)布置课后作业
阅读教材96至97页内容,整理课堂笔记,习题5。1第1,2,3题。
文档为doc格式