高中数学数列说课稿
作为一位兢兢业业的人民教师,通常需要准备好一份说课稿,编写说课稿是提高业务素质的有效途径。我们应该怎么写说课稿呢?以下是小编整理的高中数学数列说课稿,希望能够帮助到大家。
高中数学数列说课稿1一、教材分析
本课时的内容是数列的定义,通项公式及运用;本课是在学习映射、函数知识基础上研究数列,既对进一步理解数列,又为今后研究等差、等比数列打下基础,起着承前启后的重要作用.
首先,数列,特别是等差数列与等比数列,有着较为广泛的应用。值得一提的是,数列在产品尺寸标准化方面有着重要作用。例如在我国已颁布的供各种生产部门设计产品尺寸用的国家标准,就是按等比数列对产品尺寸进行分级的。
其次,数列在整个中学数学教学内容中,处于一个知识汇合点的地位,很多知识都与数列有着密切联系,过去学过的数、式、方程、函数、简易逻辑等知识在这一章均得到了较为充分的应用,而学习数列又为后面学习数列与函数的极限等内容作了铺垫。应该说:新课本采取将代数、几何打通的混编体系的主要目的是强化数学知识的内在联系,而数列正是将各知识勾通方面发挥了重要作用。
最后,由于不少关系恒等变形、解方程(组)以及一些带有综合性的数学问题都与等差数列、等比数列有关,从而有助于培养学生综合运用知识解决问题的能力。因此本节内容起到一个巩固旧知,熟练方法,拓展新知的承接作用。
二、学生情况分析
学习障碍:
本节课是学习数列的起始课,在学习中会遇到下列障碍:
1.对数列定义中的关键词"按一定次序"的理解有些模糊.
2.对数列与函数的关系认识不清.
3.对数列的表示,特别是通项公式an=f(n)感到困惑.对数列的通项公式可以不只一个觉得不可思议.
4.由数列的前几项写不出数列的通项公式.
学习策略:
(1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子等.
(2)数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系.在教学中强调数列的项是按一定顺序排列的,"次序"便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列.函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法。
(3)由数列的通项公式写出数列的前几项是简单的代入法,这一例题为写通项公式作一些准备,尤其是对程度差的学生,可多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助.
(4)由数列的前几项写出数列的一个通项公式是学生学习中的一个难点,要帮助学生分析各项中的结构特征,让学生依据前几项的规律,猜想该数列的下一项或下几项的值,以便寻求项与项数的关系。最后老师与学生共同归纳一些规律性的`结论。
1、并非所有数列都能写出它的通项公式;如④
2、有些数列的通项公式在形式上不一定是唯一的。如数列1,-1,1,-1,1,-1,...的通项可写成或或等
3、当一个数列出现""、"-"相间时,应先把符号分离出来,用等来控制;
4、有些数列的通项公式可以用分段的形式来表示;
5、熟悉常见数列的通项:三、教学方法及教学手段分析
考虑到学生已学过映射、函数的特点,为突破难点,在教学上,我着重从以下几个方面:(1)数列的定义,通项公式;(2)归纳通项公式;(3)画出数列的图像;(4)把数列的通项公式理解为一种特殊函数,采取了讲解、引导、探索式相结合的教学方法启发学生积极思考、勇于创新.
(一)启发诱导式:举实例让学生找规律,得到数列的基本知识。
(二)自主学习式:根据数列的定义和前面所学的函数关系,由学生自己通过联想、类比、对比、归纳的方法迁移到新情境中,将新的知识内化到学生原有的认知结构中去。
(三)问题解决式:设计的每一个探究问题的解答过程。
(四)利用多媒体教学手段,引入课题,能激发学生学习兴趣,增加数学人文色彩,同时也阐述了数列来源于实际,化抽象为具体,增强动感与直观性,同时也提高教学效果和教学质量
总之1、本节课是数列的起始课,设置情景、激发兴趣有利于学生学好本章知识;
2、把数列与集合、函数对比学习,有利于巩固旧知识,掌握新知识,使所学知识形成系统化;
3、教法和学法上突出教材重点、力求突破难点,加深学生对知识的理解。较多地采用提问(包括设问);在教学材料呈现上以多媒体形式给出。例题的配备由浅入深、渗透了思维活动组织上由此及彼的类比推理概括的方法。贯彻"教师为主导、学生为主体、探究为主线、思维为主攻"的教学思想,采取"精讲、善导、激趣、引思"的八字方针。
高中数学数列说课稿2一、教材分析
1.从在教材中的地位与作用来看
《等比数列的前n项和》是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养.
2.从学生认知角度看
从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错.
3.学情分析
教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不严谨.
4.重点、难点
教学重点:公式的推导、公式的特点和公式的运用.
教学难点:公式的推导方法和公式的灵活运用.
公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点.
二、目标分析
知识与技能目标:
理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础
上能初步应用公式解决与之有关的问题.
过程与方法目标:
通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转
化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.
……此处隐藏6086个字……2、具体用Sn公式时,要根据已知灵活选择公式(I)或(II),掌握知三求二的解题通法。
3、当已知条件不足以求此项a1和公差d时,要认真观察,灵活应用等差数列的有关性质,看能否用整体思想的方法求a1+an的值。
师:通过以上几例,说明在解题中灵活应用所学性质,要纠正那种不明理由盲目套用公式的学习方法。同时希望大家在学习中做一个有心人,去发现更多的性质,主动积极地去学习。
本节所渗透的数学方法;观察、尝试、分析、归纳、类比、特定系数等。
数学思想:类比思想、整体思想、方程思想、函数思想等。
高中数学数列说课稿5尊敬的各位考官:
大家好,我是xx号考生,今天我说课的题目是《等差数列的前n项和》。
新课标指出:高中教育属于基础教育,具有基础性,且具有多样性与选择性,使不同的学生在数学上得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。
一、说教材
本节课选自人教A版高中数学必修5第二章。本节课是等差数列概念和特点等知识的延续和深化,也是后面学习等比数列及其前n项和的基础。本节课既加深了对数列相关概念的理解,又蕴含了倒序相加法、特殊到一般的数学思想方法。在整个高中教学中起到承上启下的重要作用。
二、说学情
接下来谈谈学生的实际情况。本阶段的学生已经具备了一定的抽象逻辑思维能力,能在教师的引导下独立地解决问题。因此在教学过程中要给学生留置充分的思考时间和空间。此外要注重在学生的已有认知基础上建构知识。
三、说教学目标
根据以上分析,我制定了如下教学目标:
(一)知识与技能
掌握等差数列前n项和公式,理解其推导方法,能用公式解决简单问题。
(二)过程与方法
经历观察、思考、计算等探究过程,渗透从特殊到一般的数学思想方法。
(三)情感、态度与价值观
在学习活动中获得积极的、成功的情感体验,激发学习兴趣。
四、说教学重难点
在教学目标的实现过程中,教学重点是等差数列前n项和公式,教学难点是公式的推导过程。
五、说教法和学法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的`一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,我将采用讲授法、练习法、自主探究、小组讨论等教学方法。
六、说教学过程
下面重点谈谈我对教学过程的设计。
(一)导入新课
导入环节我会设置情境。200多年前,高斯的算术老师提出了下面的问题:1+2+3+…+100=?据说,当时其他同学忙于把100个数逐项相加时,10岁的高斯却用非常巧妙的方法迅速得出了答案。
然后简单分析1+2+3+…+100是求一个等差数列前100项的和。利用这一本质引出本节课学习等差数列的前n项和。
将著名数学家融入课堂,既能激发学生的学习兴趣,也注重了数学课堂的文化的学习和培养。此外利用数学家进行导入,渗透数学的发展史。
(二)探索新知
新授环节主要探究等差数列前n项和的计算公式,是本课的中心环节。
我会直接提问:你知道高斯是如何计算的吗?相信大多数学生听过这个故事,想到(1+100)+(2+99)+…+(50+51)=101×50=5050。
有了本道题目的铺垫,我会继续提问:1,2,3,…n,…这个数列的前n项和如何求呢?在这里组织同桌讨论。并且提示学生思考:如何使得不管有奇数个还是偶数个都能恰好配对不剩余?
高中数学数列说课稿6一、地位作用
数列是高中数学重要的内容之一,等比数列是在学习了等差数列后新的一种特殊数列,在生活中如储蓄、分期付款等应用较为广泛,在整个高中数学内容中数列与已学过的函数及后面的数列极限有密切联系,它也是培养学生数学能力的良好题材,它可以培养学生的观察、分析、归纳、猜想及综合解决问题的能力。
基于此,设计本节的数学思路上:
利用类比的思想,联系等差数列的概念及通项公式的学习方法,采取自学、引导、归纳、猜想、类比总结的教学思路,充分发挥学生主观能动性,调动学生的主体地位,充分体现教为主导、学为主体、练为主线的教学思想。
二、教学目标
知识目标:1)理解等比数列的概念
2)掌握等比数列的通项公式
3)并能用公式解决一些实际问题
能力目标:培养学生观察能力及发现意识,培养学生运用类比思想、解决分析问题的能力。
三、教学重点
1)等比数列概念的理解与掌握 关键:是让学生理解“等比”的'特点
2)等比数列的通项公式的推导及应用
四、教学难点
“等比”的理解及利用通项公式解决一些问题。
五、教学过程设计
(一)预习自学环节。(8分钟)
首先让学生重新阅读课本105页国际象棋发明者的故事,并出示预习提纲,要求学生阅读课本P122至P123例1上面。
回答下列问题
1)课本中前3个实例有什么特点?能否举出其它例子,并给出等比数列的定义。
2)观察以下几个数列,回答下面问题:
1, , , ,……
-1,-2,-4,-8……
1,2,-4,8……
-1,-1,-1,-1,……
1,0,1,0……
①有哪几个是等比数列?若是公比是什么?
②公比q为什么不能等于零?首项能为零吗?
③公比q=1时是什么数列?
④q>0时数列递增吗?q<0时递减吗?
3)怎样推导等比数列通项公式?课本中采取了什么方法?还可以怎样推导?
4)等比数列通项公式与函数关系怎样?
(二)归纳主导与总结环节(15分钟)
这一环节主要是通过学生回答为主体,教师引导总结为主线解决本节两个重点内容。
通过回答问题(1)(2)给出等比数列的定义并强调以下几点:①定义关键字“第二项起”“常数”;
②引导学生用数学语言表达定义: =q(n≥2);③q=1时为非零常数数列,既是等差数列又是等比数列。引申:若数列公比为字母,分q=1和q≠1两种情况;引入分类讨论的思想。
④q>0时等比数列单调性不定,q<0为摆动数列,类比等差数列d>0为递增数列,d<0为递减数列。
通过回答问题(3)回忆等差数列的推导方法,比较两个数列定义的不同,引导推出等比数列通项公式。
法一:归纳法,学会从特殊到一般的方法,并从次数中发现规律,培养观察力。
法二:迭乘法,联系等差数列“迭加法”,培养学生类比能力及新旧知识转化能力。
文档为doc格式